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SUMMARY

The artificial compressibility method is extended to the case of unsteady turbulent reacting flows at low
Mach number. The resulting scheme is applied to the calculation of a propagating one-dimensional (1D)
planar turbulent flame with a realistic heat release parameter. An eddy break-up-like approach, with a
conventional gradient expression for the turbulent fluxes, is retained to model this reacting turbulent
flow. A quenched form of the mean reaction rate is used to ensure the existence of a steady regime of
propagation, for which the present results are compared with those obtained by a steady analysis of the
mean flame brush structure, with excellent agreement. A sensitivity analysis of the convergence rate to the
values of the artificial compressibility factor and the pseudo-time is carried out. It is shown that a
reduced artificial compressibility factor of 5–10, combined with a pseudo-Courant number of :1000,
represents a good compromise to optimize the convergence rate. Copyright © 1999 John Wiley & Sons,
Ltd.
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1. INTRODUCTION

Unsteady reacting flows for which the density changes are mostly related to the heat release
due to combustion are often encountered in systems of practical interest, such as furnaces or
turbojet engines. For such flows characterized by a low Mach number (i.e. Ma�1), the
pressure, supposed to be thermodynamically constant, is influencing the flow motion only
through its spatial derivatives present in the momentum equations [1]. Thus, the fact that the
pressure field cannot be extracted from the equation of state implies that a specific procedure
has to be derived to accurately compute this pressure field. Specific techniques, such as the
PISO [2] or the SIMPLE(R) [3] procedures, can be used to deal with these kind of flows, but
they present the drawback of leading to program structures very different from those of
programs developed to cope with inert compressible flows. A direct consequence of this is a
greater investment in time by the end-user who has to get acquainted with several different
programs at the expense of a loss of immediate efficiency. A way of preserving a community
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of structure as large as possible between programs able to cope with compressible flows or low
Mach number flows, is to have recourse in the latter case to the artificial compressibility (AC)
method originally proposed by Chorin [4]. The AC method is a well-established numerical
approach for solving the incompressible Navier–Stokes equations. Its success is largely due to
a clear physical interpretation of the procedure: the addition of a non-stationary pressure term
in the continuity equation introduces waves of finite speed that distribute the static pressure
throughout the computational domain. The results are physically meaningful when a con-
verged solution in pseudo-time is obtained. An attractive characteristic of the AC method is
that programs originally developed to deal with compressible inert flows require only minor
modifications to incorporate this approach, thus saving a lot of computational effort and
enlarging the variety of flows that these programs can cope with. The AC method has been
recently extended to the calculation of steady isenthalpic reacting flows in the limit of a low
Mach number [5]. The resulting scheme has been successfully applied to deal with the complex
flow geometry of a turbulent flame stabilized in a stagnation point flow [6]. In all the
aforementioned cases of steady inert and isenthalpic reacting flow calculations, the artificial
compressibility is introduced in the continuity equation by writing:

(p
(t

+b div(ru)=0, (1)

where p is the pressure, t is the pseudo-time, r is the density, u is the flow velocity vector and
b is the artificial compressibility factor whose value strongly influences the convergence rate
and has to be chosen carefully. The density is known from the equation of state given by, with
the usual notations, (i) r=cst for inert incompressible flows and (ii) rT=cst for isenthalpic
reactive flows in the limit of a low Mach number. As far as unsteady flows are concerned, only
inert flows have been dealt with using the AC method by, among others, Peyret [7], Choi and
Merkle [8], Soh and Goodrich [9], Granier et al. [10] and Rogers and Kwak [11]. In these
studies, the physical time t is introduced in the momentum equation, while the continuity
equation (Equation (1)) remains unchanged. For each physical time step, Dt, the convergence
of the iteration AC cycle in pseudo-time t leads to the desired time varying solution. The
artificial compressibility method appears to be sufficiently versatile to justify a still on-going
process of improvement of either its efficiency [12.13] or its domain of applicability [5,10]. The
aim of this paper is to propose and describe the extension of the AC method to unsteady
reacting flows in the limit of a low Mach number. Section 2 presents the time-accurate scheme
based on the artificial compressibility method. A description of the flow geometry used to test
the present scheme is given in Section 3. The set of equations to be solved, together with the
details of the spatial discretization, mesh adaptation and boundary conditions are presented in
Section 4. The results are presented in Section 5. They put into evidence the capability of the
proposed time-accurate scheme to deal with the unsteadiness of a reacting flow. The results of
a sensitivity analysis of the convergence rate to the value of the artificial compressibility factor
and the pseudo-time step are also given and will help people interested in using the scheme to
begin with a reasonable choice for these parameters.

2. ARTIFICIAL COMPRESSIBILITY SCHEME

The generic vector form of the system that describes the evolution of the relevant variables (the
density, the velocity component(s), the energy or the temperature) in a laminar or turbulent
reactive flow can be formally written as (presented here in one dimension for simplicity):
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(q
(t

+
((F i−F 6)
(x

=S, (2)

where F i represents the inviscid terms, F 6 groups all the other fluxes (either laminar or
turbulent or both) and S stands for all the source terms associated in particular with the
combustion process, and possibly the turbulence modeling. The dimension of the vector of
unknowns q depends on the combustion and, if relevant, on the turbulence modeling.

The present time-accurate scheme is the result of the combination of the approaches
followed by Bruel et al. [5] for steady reacting flows and by Soh and Goodrich [9] and Rogers
and Kwak [11] for unsteady inert flows. System (2) is modified by introducing a pseudo-time,
t, leading to the following form:

(q̂
(t

+
(qac

(t
+
((Fac−F 6)
(x

=S, (3)

with

qac=I1 · q, Fac=I2 · F i, q̂=I2 · q, (4)

where the matrices I1 and I2 are defined by

I1=Ã
Ã

Ã
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Ã
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Ç

É

. (5)

The physical unsteady terms are treated as source terms during the course of the iteration
cycle in pseudo-time. Thus, starting from the known solution at time tn and for a physical time
step Dt, the desired solution at time tn+1= tn+Dt is obtained when a steady state in
pseudo-time t is reached, i.e. when (qac/(t tends to zero. Consequently, for each physical time
step, the following system has to be solved:

(qac

(t

)n+1,n+1

+
((Fac−F 6)
(x

)n+1,n+1

=S �n+1,n+1−
(q̂
(t

)n+1,n+1

, (6)

where superscript n refers to the iteration cycle in pseudo-time.
Many different options can be considered to treat the different terms in system (6). Here,

rather simple standard techniques are retained to deal with these terms, although alternative
and possibly more refined options could be considered in the future if specific requirements in
terms of either precision or rate of convergence are to be met.

Beginning with the right-hand-side of (6), a three-point backward implicit formula of
second-order accuracy is chosen to express the physical time derivative, namely:

(q̂
(t

)n+1,n+1

=3
q̂ �n+1,n+1− q̂ �n

2Dt
−

q̂ �n− q̂ �n−1

2Dt
+O(Dt2). (7)

The stability of the scheme can be enhanced in a simple way by treating implicitly in the delta
form, the term q̂ �n+1,n+1− q̂ �n. Indeed, using a linearization around the previous estimate of
the solution, i.e. q̂ac�n+1,n, one obtains:

(q̂
(t

)n+1,n+1

=
3

2Dt
� (q̂
(qac

)n+1,n

.[Dqac]n+1,nn+3
q̂ �n+1,n− q̂ �n

2Dt
−

q̂ �n− q̂ �n−1

2Dt
+O(Dt2), (8)
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where [Dqac]n+1,n stands for (qac�n+1,n+1−qac�n+1,n) and ‘· ’ indicates a matrix product. The
source term S is classically decomposed in a negative part, treated implicitly, namely

S− �n+1,n+1=S− �n+1,n+
(S−

(qac

)n+1,n

. [Dqac]n+1,n+O(Dt2), (9)

and in a positive part, treated explicitly, as

S+ �n+1,n+1=S+ �n+1,n+O(Dt). (10)

Consider now the left-hand-side of (6). Since the discretization of ((qac/(t) is influencing
only the convergence path of the iteration cycle in pseudo-time, a simple implicit Euler
formulation of first-order is retained for this term:

(qac

(t

)n+1,n+1

=
qac�n+1,n+1−qac�n+1,n

Dt
+O(Dt). (11)

As far as the vectors Fac and F 6 are concerned, and due to the fact that a one-dimensional flow
is considered, an implicit treatment of these terms in pseudo-time is easy to implement as
follows:

((Fac−F 6)
(x

)n+1,n+1

=
(

(x
�((Fac−F 6)

(qac

)n+1,n

.[Dqac]n+1,nn+
((Fac−F 6)
(x

)n+1,n

+O(Dt2).

(12)

It should be pointed out that in the case of multidimensional flows, some explicit treatment
may be the only practical way to deal with some of the components of F 6, especially those
involving cross-derivatives.

Finally, with relations (8)–(12), system (6) can be written in the following form:�� 1
Dt

I.+
(

(x
A.−

(

(x
P.−C.+

3
2Dt

G.
�n+1,n

[Dqac]n+1,nn
= −

((Fac−F 6)n+1,n

(x
+S �n+1,n−3

q̂ �n+1,n−q �n
2Dt

+
q̂ �n− q̂ �n−1

2Dt
, (13)

where I is the identity matrix, and the various Jacobian matrices are defined by:

A(n+1,n)=
(Fac

(qac

)n+1,n

, P(n+1,n)=
(F 6

(qac

)n+1,n

, (14)

C(n+1,n)=
(S−

(qac

)n+1,n

, G(n+1,n)=
(q̂
(Sac

)n+1,n

. (15)

System (13) is very similar in its formal aspect to a fractional step of implicit-factored
schemes, such as Beam and Warming-like schemes [23] for solving unsteady inert compressible
flows. Thus, if one has a program that uses such a scheme, the implementation of the AC
approach to cope with low Mach number flows (reacting or inert) is rather straightforward
and the resulting program has a structure that strongly resembles that of the original code.

3. DESCRIPTION OF THE TEST CASE

The above expressions represent the basis of the present time-accurate scheme. In order to
detail the various vectors and matrices involved in the scheme, it has now to be applied to a
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given flow geometry. Here, the geometry of an idealized 1D turbulent premixed flame that
propagates in a turbulent medium is retained. The choice of this geometry, schematically
represented in Figure 1, is dictated by its simplicity, which allows an unambiguous evaluation
of the numerical scheme as soon as the modeling of the flow is clearly given. Such a modeling
is chosen here to ensure that there exists a unique steady regime of propagation of the mean
flame brush. This choice is encouraged due to the fact that when such a regime is reached, a
direct comparison with solutions obtained from a numerical analysis of the steady equations
(written in a co-ordinate system attached to the mean flame brush) can be performed. In
addition, it is much easier to reveal the sensitivity of the convergence rate to the various
parameters that are characterizing this time-accurate scheme when the time scale associated
with the flame propagation remains constant after a given period of time.

3.1. Modeling of the reacting flow

Since the present study is concerned with the method of solution rather than the modeling
of the combustion process itself, little will be said about the combustion model. The hypothesis
of the eddy break-up model [14], which can be considered as being representative of mixing
controlled reaction rate models and which is extensively used in calculations of practical
systems such as combustion chambers of turbojet engines or industrial furnaces, is adopted.
The combustion process is represented, for the instantaneous field, through the evolution of a
single bi-valued progress variable c= (T−Tr)/(Tb−Tr), where subscripts r and b correspond
to the reactants (c=0) and the fully burnt products (c=1) respectively. The heat release
parameter x, which characterizes the gas expansion associated with the heat release, is given by
x= (Tb−Tr)/Tr. In the limit of a low Mach number, the static pressure is thermodynamically
constant, i.e. the density variations are uniquely related to the temperature changes due to the
heat release, but the pressure gradient is kept in the momentum equation. Thus, the equation
of state reads rT=rrTr=rbTb. The flame under consideration propagates through high
Reynolds number turbulence, which is supposed to be homogeneous and isotropic upstream of
the flame. For simplicity, the turbulence field is chosen to be steady and the turbulence kinetic
energy, k, and its dissipation rate, o, are constant everywhere in the flow and equal to the
values kr and or chosen to prevail in the reactants. The values of kr and or are determined via
the prescription of the rms velocity u %r=
u %r2 and the integral length scale li with the following
classical relations:

Figure 1. Schematic of the 1D planar turbulent flame.
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kr=
3
2

u %r2, or=Cm
0.75k r

3/2/li,

with Cm=0.09.
A conventional gradient assumption is retained to express the turbulent fluxes of mass

and momentum. According to this flow description, and neglecting the laminar contribution
to the effective viscosity (high Reynolds number flow), the propagation of the turbulent
flame brush is described by system (2) with:

q=Ã
Æ

È

r̄

r̄m̃

r̄c̃
Ã
Ç

É
, (16)

F i=Ã
Æ

È

r̄ũ
r̄ũ2+ p̄+2

3 r̄kr

r̄ũc̃
Ã
Ç

É
, F 6=Ã

Ã

Ã

Ã

Ã

Æ

È

0

4
3

m t

(ũ
(x

m t

Sct

(c̃
(x

Ã
Ã

Ã

Ã

Ã

Ç

É

, S=Ã
Æ

È

0
0
w̄
Ã
Ç

É
, (17)

where, for a given quantity F, F0 =rF/r̄ stands for the classical Favre mass-weighted
average. The turbulent eddy viscosity coefficient is given by

mt=Cmr̄
k r

2

or

(18)

and Sct is a turbulent Schmidt number. System (2) is supplemented by the equation of state
rT=cst written in terms of r and c as:

r̄=
rr

1+xc̃
. (19)

3.2. Mean reaction rate

As far as the propagation properties of the flame brush are concerned, it is well-known
that the form of the mean reaction rate plays a central role. A comprehensive survey of
this question can be found in [15]. In order to test the present numerical scheme, a
quenched form of the mean reaction rate is chosen. Indeed, quenching the mean reaction
rate by setting it to zero as soon as the progress variable is below some quenching value,
c*, ensures the obtaining of a unique steady regime of propagation [16,17]. The resulting
propagation velocity is in a one-to-one correspondence with the value of c* [18]. The
quenched mean reaction rate can be either a non-continuous [17,18] or a continuous [19]
function of the mean progress variable c̃. A non-continuous form of w̄ presents the draw-
back of introducing a discontinuity of the pressure gradient within the mean flame brush at
the point where the progress variable reaches the quenching value c*. Such a discontinuity
makes testing of any numerical scheme difficult because the results are always sensitive to
the mesh refinement in the vicinity of the pressure gradient discontinuity. Consequently, in

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 29: 207–227 (1999)



UNSTEADY REACTIVE FLOW AT LOW MACH NUMBER 213

the present study, a continuous quenched form of the mean reaction rate w̄ is used, which
is given by:

w̄=Í
Ã

Ã

Á

Ä

0

Cw(1+x)
(c̃−xc*)(1− c̃)

(1+xc̃)2

if c̃5xc*

otherwise
. (20)

Only a brief description of the procedure used to determine the value of c* that corre-
sponds to the desired value of the propagation velocity St 0

, is given here. Following the
procedure originally developed by Kolmogorov et al. [24] (thereafter referred to as KPP),
the steady c̃ equation, written in a co-ordinate system attached to the mean flame brush,
is transformed into a first-order differential equation for P= (mt/mSct)(dc̃/dx), where the
mass flow m through the flame brush, i.e. m=rrSt 0

, is an eigenvalue as soon as w̄
is quenched. Using the numerical technique developed by Sabel’nikov et al. [18], this
P equation is solved in the phase space by a highly accurate shooting technique proce-
dure based on a fourth-order Runge–Kutta procedure. A Newton–Raphson cycle allows
the determination of the c* value that corresponds to the desired value of the propaga-
tion velocity. The knowledge of P permits the calculations of the c̃ profile, as well as
the velocity and the pressure gradient profiles. Thus, when, with the present AC-based
time-accurate scheme, the steady regime of propagation is reached, the accuracy of
the calculated profiles as well as the value of their propagation velocity can be com-
pared with those provided by the aforementioned highly accurate Runge–Kutta procedure.
With the above form of w̄, the two contributions S+ and S− to the source term S are
given by:

S+ =Ã
Ã

Ã

Æ

È

0
0

Cw

(1+x)
(1+xc̃)

(c̃−xc*(1− c̃))
Ã
Ã

Ã

Ç

É

, S− =Ã
Ã

Ã

Æ

È

0
0

−Cw

(1+x)
(1+xc̃)2 c̃2

Ã
Ã

Ã

Ç

É

. (21)

4. FINAL SYSTEM OF EQUATIONS

By retaining the modeling presented in the previous section, the various vectors and ma-
trices defined in Section 2 and appearing in system (13) are given by:

qac=Ã
Æ

È

p̄
r̄ũ
r̄c̃
Ã
Ç

É
, q̂=Ã

Æ

È

br̄

r̄ũ
r̄c̃

Ã
Ç

É
, Fac=Ã

Æ

È

br̄ũ
r̄ũ2+ p̄+2

3 r̄kr

r̄ũc̃
Ã
Ç

É
, (22)
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Figure 2. Stencil retained for the physical and the computational meshes.
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È
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2ũ
c̃

0
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(23)

In the above expression of P, the dot indicates that the spatial derivative has to be taken
after the matrix product involving P in (13) has been performed.

4.1. Mesh and discretization

A classical staggered mesh M of nx points is used to spatially discretize the equations of
(13). With the corresponding mesh stencil, displayed in Figure 2, the vector Dqac is given by:
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[Dqac]in+1,n=Ã
Æ

È

[Dp̄ ]i−1/2
n+1,n

[Dr̄ũ ]in+1,n

[Dr̄c̃ ]in+1,n

Ã
Ç

É
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Æ
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[Dq1
ac]i−1/2

n+1,n

[Dq2
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[Dq3
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Ã
Ç

É
, (24)

with i� [2, nx−1].
The spatial derivatives (/(x appearing in (13) and in the expression of P are calculated by

considering a uniform computational mesh j via the relation:

(

(x
=
(j

(x
(

(j
. (25)

The different Jacobians (j/(x are deduced from the physical mesh and the form of the stencil
given in Figure 2, namely:

jxp
(i)=

2Dj

xu(i)−xu(i−1)
,

for velocity and progress variable derivatives at pressure nodes.

jxu
(i)=

2Dj

xp(i+1)−xp(i)
, for pressure derivatives at velocity nodes.

jx(i)=
4Dj

xu(i+1)−xu(i−1)
,

for velocity and progress variable derivatives at velocity nodes. (26)

With Dj=1, the different non-zero terms of (13) are discretized as follows:
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3
)
i

n+1,n�
,

d3
− �i−1

n+1,n=jxu
(i)jxp

(i)
�
V

mt

Sct

)
i−1

n+1,n

+G
mt

Sct

)
i

n+1,n�
,

d2�i−1
n+1,n= − (d2

+ �i+1
n+1,n+d2

− �i−1
n+1,n); d3�i−1

n+1,n= − (d3
+ �i+1

n+1,n+d3
− �i−1

n+1,n)

and

U=
�xp(i+1)−xu(i)

xu(i+1)−xu(i)
n

; S=
�xu(i+1)−xp(i+1)

xu(i+1)−xu(i)
n

; V=
�xp(i)−xu(i−1)

xu(i)−xu(i−1)
n

;

G=
� xu(i)−xp(i)

xu(i)−xu(i−1)
n

.

Unsteady terms

[G13.[Dq3
ac]]i−1/2

n+1,n#VG13�in+1,n [Dq3
ac]in+1,n+GG13�i−1

n+1,n [Dq3
ac]i−1

n+1,n.

The final form of (13) is now written as:

an+1,n.[Dqac]i+1
n+1,n+dn+1,n.[Dqac]in+1,n+gn+1,n.[Dqac]i−1

n+1,n=DtRHSi
n+1,n, (27)

where matrices a, d and g are given by:

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 29: 207–227 (1999)



UNSTEADY REACTIVE FLOW AT LOW MACH NUMBER 217

an+1,n=Ã
Ã

Ã

Ã

Ã

Æ

È

0

jxu
(i)Dt

0

0

jx(i)Dtũ−Dtd2
+ 1

r̄

jx(i)Dt
c̃
2

0

jx(i)Dtũ
�xũ2

2
−

1
3

xkr
n

−Dtd2
+ xũ

r̄

jx(i)Dt
�(1+xc̃)ũ

2
n

−Dtd3
+ 1+xc̃

r̄

Ã
Ã

Ã

Ã

Ã

Ç

É
i+1

n+1,n

,

(28)

dn+1,n

=Ã
Ã

Ã

Ã

Ã

Æ

È

1

−jxu
(i)Dt

0

jxp
(i)Dtb

1+
3
2

Dt

Dt
−Dtd2

1
r̄

0

−
3
2

Dt

Dt
Vbx

−Dtd2

xũ
r̄

1+
3
2

Dt

Dt
−Dtd3

1+xc̃
r̄

+Cw

1+x

(1+xc̃)rr

2c̃

Ã
Ã

Ã

Ã

Ã

Ç

É
i

n+1,n

,

(29)

gn+1,n=Ã
Ã

Ã

Ã

Ã

Æ

È

0

0

0

−jxp
(i)Dtb

−jx(i)Dtũ+Dtd2
− 1

r̄

−jx(i)Dt
c̃
2

−
3
2

Dt

Dt
Gbx

−jx(i)Dt
�xũ2

2
−

1
3

xkr
n

+Dtd2
− xũ

r̄

−jx(i)Dt
�(1+xc̃)ũ

2
n

+Dtd3
− 1+xc̃

r̄

Ã
Ã

Ã

Ã

Ã

Ç

É
i−1

n+1,n

,

(30)

RHSi
n+1,n=

−jxp
(i)[br̄u �in+1,n−br̄ũ �i−1

n+1,n]−V
�

3
br̄ �in+1,n−br̄ �in

2Dt
−

br̄ �in−br̄ �in−1

2Dt
n

−G
�

3
br̄ �i−1

n+1,n−br̄ �i−1
n

2Dt
−

br̄ �i−1
n −br̄ �i−1

n−1

2Dt
n

−
jx(i)

2
��

r̄ũ2−
2
3

r̄kr
�)

i+1

n+1,n

−
�

r̄ũ2−
2
3

r̄kr
�)

i−1

n+1,nn
−jxu

(i)[p̄ �i+1/2
n+1,n− p̄ �i−1/2

n+1,n]

Ã
Ã

Ã

Ã

Ã

Ã

Ã

Ã

Ã

Æ

È

+jxu
(i)jxp

(i+1)(d2
+ũ �i+1

n+1,n−d2ũ �in+1,n+d2
−ũ �i−1

n+1,n)−3
r̄ũ �i−1

n+1,n− r̄ũ �i−1
n

2Dt
Ã
Ã

Ã

Ã

Ã

Ã

Ã

Ã

Ã

Ç

É

+
r̄ũ �i−1

n − r̄ũ �i−1
n−1

2Dt

. (31)

−
jx(i)

2
[r̄ũc̃ �i+1

n+1,n− r̄ũc̃ �i−1
n+1,n]+jxu

(i)jxp
(i+1)(d3

+ c̃ �i+1
n+1,n−d3c̃ �in+1,n+d3

− c̃ �i−1
n+1,n)

+Cw(1+x)
(c̃−xc*)(i− c̃)

(1+xc̃)2 −3
r̄c̃ �i−1

n+1,n− r̄c̃ �i−1
n

2Dt
+

r̄c̃ �i−1
n − r̄c̃ �i−1

n−1

2Dt

The block tridiagonal system (27) is then solved by a standard LU algorithm.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 29: 207–227 (1999)



C. CORVELLEC ET AL.218

4.2. Adapti6e gridding procedure

In order to minimize the number of grid points, while preserving a high level of spatial
accuracy, an adaptive gridding procedure [20,21] is combined with the present time-accurate
scheme. The staggered mesh M in the physical domain is chosen such that the two following
constraints on the gradient and on the curvature of the c̃ profile are simultaneously satisfied
everywhere in the domain:& xi+1

xi

)(c̃
(x
)
dx5e1�max c̃−min c̃ �, i=1, . . . , nx−1 (32)

and & xi+1

xi

)(2c̃
(x2

)
dx5e2

)
max

(c̃
(x

−min
(c̃
(x
)
, i=1, . . . , nx−1. (33)

Thus grid points are concentrated in regions of high activity, thereby guaranteeing the
accuracy of the numerical results. The values of the small numbers e1 and e2 are typically
around 0.05.

4.3. Boundary and initial conditions

The choice of the boundary conditions to be imposed at the reactants side (x=xr) and at
the burnt products side (x=xb) is dictated by the subsonic nature of the flow, which imposes
the number of variables that should be specified or extrapolated.

At x=xr, the velocity ur and the progress variable are fixed. More precisely, the value of c̃
is chosen to be compatible with the asymptotic behavior of the solution given by Sabel’nikov
et al. [18], namely:

c̃(x=xr)=
xc*

(1+x2c*) exp[+ (mSct/rrmt)(x*−xr)]−x2c*
, (34)

where x* represents the x-location of the point at which c̃=xc*. At x=xb, the static pressure
p(xb)=pb is kept constant and serves as reference value for the pressure field, and the velocity
and progress variables are extrapolated by assuming a zero curvature of their profiles. At time
t=0, the velocity and the pressure are set everywhere to ur and pb respectively. The initial
profile of c̃ is chosen to vary between xr and xb as follows:

Í
Ã

Ã

Á

Ä

Öx� [x r, x1]

Öx� [x1, x2]

Öx� [x2, xb]

c̃= c̃(x=x r),

c̃=
x−x1

x2−x1

,

c̃=1.

(35)

According to this choice, the mean flame brush will propagate towards the origin of the
domain as schematically shown in Figure 1.

5. RESULTS

The resulting flow chart of the program is presented in Figure 3. At each physical time step,
two nested loops of convergence are performed. The first loop corresponds to the convergence
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of the iteration cycle in t on a given mesh and the second corresponds to the convergence of
the gridding procedure. Typically, three or four gridding steps are necessary per physical time
step. Two different types of propagating flames are considered, a slow flame (x=5, St 0

=0.5
m s−1, test case 1) and a fast flame (x=5, St 0

=10 m s−1, test case 2). When not stated
otherwise, the values of all the different parameters that describe the present calculations are
given in Table I.

Figure 4 presents, for case 2, a typical evolution of the maxima of the residuals of the RHS
(Equation (31)) during the course of the iteration cycle in t combined with the gridding
procedure. On a given mesh, these residuals are experiencing a quasi-monotonic decrease.
Practically, the iteration cycle in t is considered to be converged when the maxima of all the
residuals are below 10−5, since no noticeable changes in the profiles have been observed when
a more stringent criterion is adopted. An illustration of the propagation of the mean flame

Figure 3. Flow chart of the program.
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Table I. Parameters defining the two test cases

Case 1 2

x 5.05.0
0.00.0ur (m s−1)
10.01.0u %r (m s−1)

0.03958 0.03958xc*
0.5 10.0St 0

(m s−1)
li (m) 0.001 0.001
Sct 0.75 0.75

8000200Cw (kg m−3 s−1)
1.18861.1886rr (kg m−3)

xr (m) 0.0 0.0
xb (m) 0.50 0.20

0.100.40x1 (m)
0.45 0.15x2 (m)

b. 10.0 10.0
1000 1000Crt

Crt 0.50 0.50

brush is presented in Figure 5, which displays the time evolution of the profile c̃(x) for case
1. At 20 ms, the steady regime of propagation is reached and the mean flame brush structure
becomes invariant by translation. This fact is clearly illustrated in Figure 6, which presents, for

Figure 4. Example of the convergence history of the two nested loops of artificial compressibility iteration and
remeshing for one physical time step (case 2, Crt=0.5, Crt=1000).
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Figure 5. Calculated propagation of the mean flame brush (case 1, Crt=0.5, Crt=1000).

case 1, the time evolution of the x-location at which c̃=0.1, 0.5 and 0.9. The trajectories of
these three points are becoming straight and parallel as soon as t\20 ms, indicating that from
this instant onwards, the corresponding points travel at the same constant speed, which is a
signature of the invariance by translation of the mean flame brush structure. The reactants
being at rest in average (ur=0), the mean flame brush velocity relative to the reactants, St, is
simply given by the slope of one of these trajectories, for instance St= �dxc̃=0.5/dt �. As
illustrated in Figure 7, in both cases, the value of St predicted by the present time-accurate
scheme asymptotically approaches the value St 0

that corresponds to the quenching value xc*.
Correctly predicting the mean flame brush asymptotic propagation velocity is encouraging as
far as the time accuracy of the scheme is concerned, but how accurately calculated is the mean
flame brush structure? To answer this question, the calculated limit profiles, i.e. the profiles
obtained when a steady regime of propagation is reached, are compared with those obtained
using the Runge–Kutta procedure developed by Sabel’nikov et al. [18] in the framework of a
KPP approach. Whether it is for the c̃ profile (Figure 8) or for the mean pressure gradient
profile (Figure 9), the agreement between the present results and those given by the KPP
approach is excellent, even in the case of the fastest flame (case 2), for which the present
scheme proves its ability to accurately capture the steep pressure gradient that exists through
the mean flame brush. These results clearly illustrate the capability of the present scheme to
deal with unsteady reacting flows featuring large density variations. The problem now faced by
the potential end-user of the present time-accurate scheme is the following: what is the best
choice for b and Dt? Although the answer to this question is highly dependent on the
geometry considered and the time scale associated with the unsteadiness of the flow, some
guidelines can be deduced in the present flow geometry from a sensitivity analysis of the
convergence rate of the calculations to the choice of these parameters. The influence of the
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artificial compressibility factor b can be investigated by reference to a reduced artificial
compressibility factor b. =b/u ref

2 , where the reference velocity depends on the flow considered
[22]. For reacting flows, a proper scaling of b is given by uref=ub, where ub is the characteristic
velocity of the burnt products [5]. For the present flow geometry, ub is estimated by
ub=ur+xSt 0

, which represents the velocity of the burnt products behind the mean flame
brush. The sensitivity of the convergence rate to the value of Dt is performed by analyzing the
influence of an artificial Courant number based on the largest spectral radius obtained in the
domain of calculation and associated with the inviscid part of the equations, namely [5,22]:

Crt=
Dt

Dx
(ub+
ub

2+b). (36)

The influence of the physical time step Dt is strongly connected to the method of resolution.
In particular, for multidimensional flows, it is well-known for instance, that the use of an
approximate factorization scheme imposes a limitation on the value of (bDt), whereas the
recourse to a relaxation procedure does not. For the present 1D geometry, a physical Courant
number Crt that takes into account the time scale associated with the flame brush propagation
is chosen. Accordingly, Crt is defined by:

Crt=
Dt
Dx

St 0
. (37)

The use of an adaptive gridding procedure complicates the choice of Dx in the above
expressions of Crt and Crt, since the non-uniform mesh changes during the course of the
calculations. Thus, Crt and Crt are calculated by using the smallest value of Dx of the current

Figure 6. Time evolution of the spatial location of points c̃=0.1, c̃=0.5 and c̃=0.9 that belong to the propagating
mean flame brush (case 1, Crt=0.5, Crt=1000).
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Figure 7. Time evolution of the mean flame brush propagation velocity (Crt=0.5, Crt=1000).

mesh. The sensitivity analysis is performed in case 2, when the mean flame brush has reached
its steady regime of propagation at a velocity of 10 m s−1. In such a regime, the value of Dx
used to calculate Crt and Crt remains quasi-constant as does Dt and Dt as soon as Crt and Crt

are kept constant. The number of accumulated pseudo-time steps needed to calculate the flame
displacement during a period of time of 0.15 ms is chosen to reveal the influence of the
parameters values on the convergence rate. Figure 10 shows that, for a reasonable value of
Crt=0.5 (corresponding to Dt=1.25×10−5 s), a value of b. between 5 and 10 optimizes the
rate of convergence. Such a result is similar to that obtained for the calculations of steady inert
or reacting flows. For such an optimum value of b. , the value of Crt found to optimize the
convergence rate of the present unsteady calculations is in the range 1000–1400, which is much
larger than the value of 45 found in the steady calculations [5]. Such a difference is easily
explained if one considers that for the present unsteady calculations, the solution obtained at
the previous time step represents a much better initial guess to the solution at the next time
step; whereas for steady calculations, the initial guess can be extremely different from the
converged solution, thus imposing a much smaller value of the artificial Courant number. As
shown by Figure 11, increasing Crt from 0.5 to 1.5 leads to a slight shift of the range of
optimal value of Crt from 1000–1400 to 800–1200. It should be noted that, as soon as an
optimal value of b. is used, the sensitivity of the convergence rate to the value of Crt is weak.
For instance, for b. =5 and Crt=1.5, a variation of less than 20% of the number of
accumulated pseudo-time steps is observed when Crt varies between 500 and 1600.

From these results, the following recommendations can be made for roughly estimating the
values of the parameters required by the present scheme:
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1. determine a characteristic time scale associated with the unsteadiness of the reacting flow
considered;

2. choose the physical time step Dt in order to obtain a moderate value (relative to the type
of time integration used) of the physical Courant number based on this characteristic time
scale;

3. determine the reference velocity uref as being the maximum convective velocity in the flow
that will be, most of the time, found to be in the region of the burnt products;

4. set the value of b between 5u ref
2 and 10u ref

2 ;
5. for a given mesh, choose Dt such that Crt#500–1500.

It is clear that the above practical and rather simple recommendations provide only a
starting point for the potential end-user of the present time-accurate scheme especially when
the calculations of multidimensional flows are to be considered.

6. CONCLUDING REMARKS

This work shows how the artificial compressibility approach can be used to derive a method
of solution of unsteady reacting flow fields in the limit of a low Mach number. The resulting
time-accurate scheme has been validated in two cases of 1D propagating turbulent flames with
large density variations. Whether it is for the spatial accuracy of the calculated flame brush
profiles or for the prediction of the flame brush propagation velocities, the present results are
in excellent agreement with those obtained by an analysis of the steady regime of propagation.
With the present extension, the last domain of applicability of the artificial compressibility

Figure 8. Limit profile of the mean progress variable obtained when a steady regime of propagation is achieved:
comparison with the profile deduced from a steady regime analysis [18].
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Figure 9. Limit profile of the mean pressure gradient obtained when a steady regime of propagation is achieved:
comparison with the profile deduced from a steady regime analysis [18].

Figure 10. Influence of the artificial Courant number Crt and the dimensionless artificial compressibility factor b. on
the convergence rate (case 2, Crt=0.5, 12 physical time steps).
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Figure 11. Influence of the Courant numbers Crt and Crt on the convergence rate (case 2, b. =5.0).

approach has been now explored. The extension of this scheme to multidimensional geometries
can be easily considered, especially when using implicit-factored schemes for which the present
scheme corresponds to one of the two (2D) or three (3D) fractional steps involved by such
procedures. Thus, and as pointed out by in [12], the artificial compressibility method may not
be the most efficient method for each class of flow it can deal with, but its now proven
versatility and also the availability of specific techniques that can be used to greatly improve
its efficiency for a given class of flows [10,13], make it a very attractive and valuable tool for
CFD.
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